AUTHOR
FITLE

Dershem, Herbert L.
Computer Problem Solving. [and], Iferation; and Computer Problem Solving. Computer Science/Algorithms. Modules and Monographs in Undergraduate Mathematics and Its Appliciations Project. UMAP Units 477 and 478.

INSTITUTION
SP'ONS AGENCY pub date GRANT NOTE'

EDRS PRICE DESCRI PTORS

Education Development Center, Inc., Newton, Mass.
National Science Foundation, Washington, D:C.
80
SED-76-19615-A02
75p.
MFOI Plus"Postage. PC Not Available from'EDRS. *Algorithms; Answer Keys; *College Mathematics; Computers; *Computer Science Education; Higher Education; Instructional Materials; *Learhing Modules; *Mathematical Applications; *Problem Solving; Supplementary Reading Materials

ABSTRACT

These modules view aspects of computer use in the problem-solving'process; and introduce techniques and ideas that are applicable to other modes of problem solving. The first unit looks at algorithms. flowchart language, and problem-solving steps that apply this knowledge. The second unit describes ways in which computer iteration may be used effectively in problem solving, and shows ways. in which two other forms of iteration may be applied in algorithm. construction. Both modules include exercises, and each has a model exam. Answers to all problems presentéd afe provided..(MP).

[^0]

Intermodular Descmiption Sheet: UMAP Unit 477

Title: COMPUTER PROBLEM SOLVING

Author: Herbert L. Dershem
Department. of Computer Science
Hope College

* - Hollặnd, Mic̣igan 49423,

Review Strage/Date: • III $9 / 30 / 80$
Classıfication: COMPUTER SCI/ALCORITHMS
Prerequisite Skills: None

Output Skills;

Be able to explain the concept of algorithm and be able to distinguish algorithms from non-algorithmic soluțion
\therefore descriptions
. Be able to read and explain algorithms written in the flow-... chart language.
3. \because. Be able to state the seven steps in computer problem 'solving and.be able to apply them.in solving :simple problems. k
Related Units:
Iteration and Computer Probsem Sólving (unit ${ }^{\circ} 478$)

$$
\text { ©. } 1980 \text { EDC/Project UMAP }
$$

All rights reserved.

MODULES AND MONOGRAPAS IN UNDERGRADUATE

 mathematics and its applications project (umap)The goal of UMAP is to develop, through a community of users and developers, a system of instructional modules in undergraduate mathematics and its applications which may be used to supplement existing courses and from which complete courses may eventually be built..

The Project is guided by a National Steering Committee of mathematician's, scientists, and educatō's. UMAP is funded by a grant from the National Science Foundation to Education•Deyelopment Center, Inc., a publicly supported, nonprofit corporration engagèd in \cdot educational research in the U.S. and abroad.

project staff

> Ross L. Finney
> Solomon Garfunkel
> Feli icia DeNay

Barbara Kelczzewski
-Paula M:. Santipl to
Donna DiDuca:
Jąnet Webber
Zachary Zevitas,
Director
Gonsortium Dj-rector
Associate Director"
Coordinator for Materials Production Assistant to othe Directors.
Project Șècretary/Produçtion Asst.
Wrojd Processar
Wrdi Processor
StaffeAssistant
Natronat steering- Comittee
W.T. Martinn (Chiair) * th.I.T.

Stever J.. Brams
Llayron Clarkson
Einest J. Henley William Hogan
Dōnald A. Larson
William F. Lucas
R. Duñean Luce

George Miller
Waiter E. Sears
George 'Springer
-Arnold A. Strassenburg.
Alfred B. Willcox
Mathematical Association of America
The Project would like to thank Carol Stokes of Danville Area Community College, Daṇville, Illinoiṣ; Ray Treadway of. Bennett College, Greensboro, North Carolina; Douglas F. Hale of the University of Texas-Permian Basin, Odessa, Texas; Carroll 0. Wilde of the Naval IPostgraduate School, Monterey, California; and one anonymous reviewer, for their reviews, and all others who assisted in the production of this unit.

This material was prepared with the partial support of National Science Foundation Grąnt No. SED76-19615 A02.. Recomitendations expressed are those of the author and do not necessarily reflect the views of the NSF or the copyright. holder.

An o'rdered set of rules fori solving a problem is
called an algorithm iff it has the following properties:

- 1. The ryles are unambiguous.
- 2. - The rules are in a proper sequence.
- 3. The procedure specified by the set of rules
© solves the problem:.

4. The procedure terminates aftgr "a finite number of steps, or actions specified by the rules
We wili' "back into". an understanding of what an algorithm is by first considering what one isn't.
. Nonalgorithm 1. Directions for getting to the hospital.
5. Go west on Tenth Street until you'come to a stoplight.
6. Turn onto River Avenue at the stoplight.
7. Makesa right at the Y on River Avenue.
8. The ho'spital will be on your right a few blocks past the Y.

Unfortunately, we haye all been the recipients; and probably the givers as well, of nonalgorithmic directions like these. I hope your illness. is not too acute•in this. case because.if it is, you may términate before the algorithm does. The problem with this nonalgorithm'is that it violates condition, 1 by, bęing ambiguous. In rule 1 , which stop light is meant? In rule 2 , which-way should I turn? At the Y described in rule. 3 , there is af right fork and a sharp right turn posisible. Which should I take? How many blocks are a few in step 4?

Nonalgorithm 2. Ditections for passing. an exam.
". I: Get lots of sleep the night before the exam.
2. Outline the material.
3. Read the material.
4. Listen attentively in class.
5. .Take the examination.

This nonalgorithm contains rúles .that might be adequate to solve the problem, but they cannot be carried óut in the specified order: thus the rules are not in proper, sequence; and condition 2 of the algorithm definition is violated.

ivonalgorithmin 3°. Directions for passing a true-false test

'1. Bring a coin to the test
2. Flip the coin for each item on the test.
'3.' If the coin lands heads respond with true, if
.-... the coin lands tails, respond with false. .
There is no ambiguity in this nonalgorithm, and steps"are in proper sequence. The only difficulty is that unless you have an ünusually intelligent (lucky?) coin, this procedure may not solve "the problem at hand, Which is to pass the test. Hence, condition 3 of the definition is.violated.

Nonalgorithm 4. Directions for,making a milion dollars.

- $1:$ Get 20 mililion dimes
2., Gó to Las Vegás.

3. Play the dime slot machines until ejther you have 20 million (or more) dimes or untily you. run out of them.
! \quad !
4. If you ruñ out of dimes; go back to step 1 .
$\because{ }^{\wedge} \cdot 5$. "Íf you reach 20 milliond dimes, quit while-you're ahead!": \because.
Eveń if you obtain the supply of dimes. needed in * Step , íand "the cranking power needed in step 3 , this... procedure is still a nonalgorithm because it may never terminate: there.is no 'guarantee that' you will ever <obtain the desi'red result, at step 3. Hen'ce, čondition 4 in the definition is violated.

Now we are ready to consider an' example'which does qualify as an algorithm unde'r our definition.

Algorithm 1: Find, the greatest fommon divisor of two given numbers, N and M.

1. Let K be the smaller ${ }^{\circ} \mathrm{f} N$ and M.
2. If K divides both N and M, then K is the greatest common divisor.
3. Otherwise, subtract 1 from K. "
4. Go to step 2.

This algorithm'is unambiguqus, its rufes are in proper sequence, it solves the problem, and it does*so in a finite number of steps.. It is also very simple and easy to follow. However, it'may take a long time to solve the problem using this algorithm. For example, if 15798433 and 566832 are used for \bar{N} and M , step 2 would be executed 566783 times before the ciorrect answer of 4.9 is found. A more efficient algorithm, that 'is, one that can solve the same problem with much less effort', is knowno and we shall present it next.
Algorithm 2. Given two numbers, N and M, find their : greatest common divisor.

1. If N is smaller than M, then exchange the two:
2. Divide ' N by M and call the remainder R.
3. If the remainder R is zero; then, M is the GCD.
4. Otherwise, set N to the valye of M and M to the value of.
-5. Go"to step 2.
If we follow this algorithm for ${ }^{\prime} N=15798433$,
$\{=566832$, we obtain the successive values of M as follows:

$$
M=1029
$$

$$
M=.49
$$

' In this Gase we execute step 2 onfly inine times, a significant improvement over Álgorithm 1.

The phenomenon which we observe here occurs often in algorithms. 'Algorithmol is \cdot simple, straight'forward, and solves the problem in an inefficient manner, Algorithm 2 is much more, efficient but, the cosit is additional difficulty in understanding ${ }^{\circ} \mathrm{t}_{\mathrm{t}}$, This tradeoff between simplic ity, and efficiency of algorithms frequently forces the algorithm-designer to "make a decisiogn on the subject of priorities

Exercises

1. "Modify nonalgorithm 2 to make it' an algorith́m
2. 吃termine whether each of the following are algorithms. or nonalgorithms. For each nonalgorithm, find the rule or rules it violatesu ąnd rewrite it as án algorithm.
(a) How to place a telephone call
3. Pick up the receiver.
2.' Listen for a dial tone.'
4. Dial the number.
5. Cdyduct the conversation.
(b) How to find a aord in a dictionary or determine, that it is not listed
6. . Turn to any page.
7. If wiord at the top left of the page occurs alphabeticallly after the desired word, go to step 4.
3.' Turn ahead 10 pages and go to step 2.
-4. Turih baçk 2 pages.
8. If.word at the top, right is before the desired word, go to step ${ }^{3}$.
9. Scan page for desired word.
10. If it is found, write a definition.
11. If it is not found, write, "not' in dictionary.:"
(c) How to filll a ditch with sand.
i< Obtaiṇ a shovel.
12. Start shoveling sand into the ditch.
3., If you run out of sand, go gét more and go to or step ${ }^{\circ} \mathrm{r}$ 4. When ditch is full, stop.
(d) How a doctor hears a patient. ${ }^{\text {B }}$ 1. Learn *about patieṇt's problem.
i. Considen the symptoms.
13. Initiate a tréatméht.
4.' Examine and test patient.
14. 'If patient is cured, then send the obill.

3. FLOWCHART LANGUAGE

We" next ask how wę should expres's algorithms. In other words, is there a convenient language for communia cating an algorithm from one person to another or from a person to a computer?

The 2 anguage we have used above ín. complunicating: Algorithms 1 and 2 is English, which is very appropriate because it is understood by a reasonably.large subset of the people with whom we communicate. \because English has'two disadvantages; however., First, it is ambiguous as far as.. meaning is concèrned, and therefore, evén a carefully worded algorithm can suffer from the ambiguity of the language. - Second, English is not an appropriate language for communicating with compurters, since it is too complicated for them to understand.

It would appear 'then, that a computer programming language may be an answer to our dilemma. Programming * languages are, of necessity, unämiguous, añdare understandable to the computer. And indeed one of our, goals is to express angorithms in this form so that the computfr can solvẽ the problem.. But people have diffi.culty expressing algorithms directly in programming.
languages. For this reason develop an intermediate language between English and the programming language, which we call flowchart Language.

- The expression of an algorithm in Flowchart

Language consists of the rules of the algorithm written in abbreviated English and pictured graphically in "boxes." These boxes are connected by arrows which indicate the sequencing of the steps. We will use this Flowchart Language to express all of our algorithms.

There'are five different kinds of boxes that are used in representing algorithms.

1. Terminal box

Terminal boxes are used to identify the starting point and stopping • point of an algorithm. They. will always contain either the word START or the word STOP.

2: Processing box

The work of the algorithm is specified in processing boxes, It contains an English. statement which describe's the action that is to be taken.

$$
12
$$

5. Decision box

Each decision box contains a question which can be . answered yes or no. If the answer is. "yess," the "yes" path is taken from-the box. If the answer is "no,", the "no" path is taken:
[As an example, Algorithm 1 in Flowchart Language is shown below.

Names that are used in an algorithim to represent numerical values and whose values maxy chänge during the execution of the algorithm, are called vaniables. Three variables, N, M, and K, are used in, Algorithm 1 . It is easier to understand what ant algorithm does if there is \quad some, explanation of the meanings of the variables included with the algorithm. "For example, for Algorithm 1, our. váriable descriptions would be as follows:

Setting a variable to the value of another variable or to the result of some arithmetic expression is such a common algorithm step that a special symbol, the.left pointing arrow, is used to represent it: For example,

$$
A+B
$$

means "set A to the value of $B . "$ This notation can also be used to represent the incrementing or decrementing of variables. The step "add 1 to X " is given by

$$
x+x+1
$$

Using this new symbol and the variable descriptions, we can now restate Algorithm 1 .
Algorithm 1 - Second Version. Given two numbers, 存and M, -find, their greatest common divisor.

> Variables
$\frac{\text { Name }}{\mathrm{N}, \mathrm{M}}$

Description
The two, given numbers
A counter used to search for the greatest, common divisor. It will contain the greatest dommon divisor when the
algorithm terminates.
extensive testing must take place to veriff that it doès iñdeed solve the problèm.

In this section, we outline a step-by-step procedure that is useful in the construction of algorithms which - solvéproblems. You might call thís an algorithm for -cons̈tructing algorithms. This process consists of śeven steps which are described below.

1. Precisely define the problem.

At this step, the problem solver deqermines what thè ${ }^{3}$ prablem is: This step, in practice, if is usually quite diłficult. In many courses we are not concerned with this step since, the problems are prefisely formulated by the textbook author or the instructor. An important part of this step is, determining exactly what form the output of the problem should have. 2. Identify the inputs to the problem.

At this step you ąs, "What are the pertinent facts that are given in this problem?" The answer will depend on what is available and what is needed. One important aspect of this task is determining the appropriate form for the input. -
3. Identify the outputs of the problem.

Here you determine the results that are desired. By - considering the result of step i, you shoyld be able to determine what is needed and in what form.
4. Construct an algorithm for the solution.

This is the key step in the process and one which can cause the mos't trouble. Too many problem-solvers try to skip this step or combice it with the next in an effort tó obtain a solution quickly. This is a situation where haste really does make waste: time sinvested in careful formulation here can save much more time at steps 6 and 7.
5. Implement the algorithm for the solution.

In cồmputer problem solving, this step is known as programming. : If step 4 is done carefully, it can be carríed out in átraightforward way once the bassics of a programming language are mastered:
6. Test the procedure constructed in step 4.

Once the implementation is complete, we test the . procedure using inputs for which the correct outputs are known, and compare the results with our expectations. If they differ, then the existence of an error has been discovered. There ìs a temptation to assume the algorithm is correct and rush through this, step. As you gain-more experience with computer problem solving, you will learn (probably the hard way) that you should never assume any thing is correct. Thàt kind of skeptical attitude makes for the best, testing:
7. Locate and correct errors uncovered by testing and go back to stép 6.

Errors may originate at step 4 or step 5. Usually those which originate at step 5 are fairly easy to detect and correct because they require some minor modification to the program. Errors which origniate at'step 4 are much mane difficuilt. Such errors māy require you to completely rethink your algorithm and, in some cases, discard all you-have done and start over. Again, a careful job at step 4 can avoid this waste.

5. AN EXAMPLE

$\because 1$
Let's follow this process through for a simple problem. The problem is to read a set of numbers and determinè how many are positive and how many are negative.

1. Precise formulation - The problem as stated above leaves out some necessary "information. 'First, what are we to do with zeros? Şhould they count as positive;
negative, or not at all? Secondly, how will we know when we have all of the numbers?

We can solve both of these problems at once by saying a zero will not be counted as positive or 'negàtive but rather a zero will signif\& the end of the data. Therefore, our more precise formulation of the problem now reads as follows:

$$
\begin{aligned}
& \text { Read a set of numbers untila zero is encoun } \\
& \text { tered and count the number.of positive and } \\
& \text { negative numbers read. }
\end{aligned}
$$

2. Inputs - The inputs will be the given set of numbers; all non-zero, followed by a zero. Note that any input not ending with a zero is invalid for this problem
3. Output - The'outpuif ợ our problem consists of two numbers, the number of positive values and the number of negative values
4. Construction of an algorithm• Our flowchart language - is á useful tool here and we can nicely formulate our solution as follows:
Algorithm 2\% Count the number of positive andinegative

This solution algorithm, though certainly correct, provide's too little detail to bé of sufficient use in implementation, Therefore, we'refine it.
Aigorithm 3. Count the number of positive and negative values in a data set - Version FI.
$\frac{\text { Name }}{\text { VAL }}$
NNEG
NPOS

Description

Thenvalues input.
The number of negative values.
The number of positive values.

This algorithm appears to be correct. "But" as we warned earlier, never assume anything is correct.
5. Implementation - Algorithms such as this one are implemented translating them into a computer programming language such as FORTRAN or BASIC. Since this module is intended to be independent of programming languages, we will not discuss this step in algorithm development. If you are interested in pursuing this. further, you may do so by learning to program in any programming language.
6. Testing - The above algorithm was implemented in a programming language and run with the following results..

Input:	
Output:	$12,-5,15,-2,7,0$
	NNEG $=1762699507$
	NPOS $=2001731581^{\circ}$

Obviously, there is some difficulty here. The strategy used to check for the presence of an error was to use an input for which we know what the output should be. . When the output obtained differed from our expectations, we' knew there was an érror, and therefore mer must proceed directly to step 7.

Had we been successful in generating the expected output for this particular input, we should- run additional tests until we have satisfied ourselves that the procedure is correct.
7. Locate, and correct errofs - This phase of the problen solving process is a difficult one which is learned only through experiences In this case, we notice that values of NNEG and NPOS are quite wild and after a"little thought we suspect that these two variables" were not. given'proper initial values, which in this case should be zéros. In many programming 1 anguages, variables like NNEG and $\mathrm{H}_{\mathrm{H}}^{\mathrm{H}} \mathrm{P}$ OS are not automatically set to zero. In order to insure the correctness of our
program we need to include steps to do this.
After our algorithm is modified to include these initializations to zero, it takes the following form.
Algorithm 4. Count the number of positive and negative values in a data set - Version 3.

- After making the correction which results in Algorithm 4, we must return again to step 6 for testing. Extensive testing of the implemented version of this algorithm will reveal no further errors. Wंhen we have tested enough to satisfy ourselves with the correctness of the algorithm, we accept it as providing the solution.

We have now outlined a basic, procedure for solving a problem. This procedure can be put in the form, of a flowchart as well.

1. One possible solution might bè:
2. "Read the material.
3. Listen "attentively in class.
4. Outline the material.
5. Gets lots of sleep the night before.
6. Take the examination.

1

$$
1
$$

2. (a) Nonalgorithm because it may fail to solve the problem. For example, what happens if the line is busy?
(b) Nonalgorithe because it may not solve the problem. If the search begins on an even (odd) page, then only even (odd) pages will be s'canned. If step 4 had rèad, "Turn back 1 page,", the procedure would have been an algorithm.
(c) Nonalgorithme becaúse it is ambiguous. Step -3 does not explain how to get more sand.
(d). Nonalgorithm becausissteps are out of order. If steps were changed to $1,4,2,3,5$ then it would' be better. Also, no action is specified، if patient is not qured, so the procedure may not terminate. One could add, the step:
3. If patiqnt dies, then stop treatment,
\square
$-\quad$

1

4. This will-print
$\mathrm{N}=5$
sum=15
5. Precise formulation: - Put three real numbers into noni-descending order.
Input: The three numbers in original order.
Output: The three numbers in non-descending order.
Algorithim: Variables
$=\frac{\text { Name }}{A, B, C}$
Desicription

- The three variabies read and placed in order with A the smallest and C the largest.

7: Precise formalation: Input a positive integer and compute the sum of all positive integers, less than or equal to the integer input.
Input: A positive integer.
Output: The sum of all positive integers less than or equal to the integer input.
Algorithm: $\quad \frac{V a r i a b l e s}{4}$

Description
The number of integers summed.
A counter from 1 to 此家, The sum of the integers.

3. Design an algorithim for solving the following problem: Convert a length from iniches to feet and inches.
(c)
(a) Define the problem more precisely. "; ;
(b) The following, are the boxes needed for an algorithm to solve this problem. Fill in the two empty boxes.

(c) Arrange the boxes above into a flowchart language algorithm to solve the stated, problem. Use each box exactly once.

1
?
8. 'SOLUTIÓNS TO MODEL EXAM

1. (a) Algorithm
(b) This does not solve the problem. In step 3, you do not receive the money by asking.
(c) The steps are out of sequence.
2. 4

3 • $\quad . \quad 6$
2. $\because \cdot \quad . \quad . \quad . \quad{ }^{*}$.

5
3. (a). The problem could more precisely way:

Convert a length from inches to feet tand winches where the number of feet is integer andras' large as possible.
(b) Inpuit box shouid contain "inches".

Output box should contain "feet, inches".

Student: If you have trouble with a specific part of this unit, please fill out this form and take it to your instructor for assistance. The information you give will help the author to revise the unit.
Your Name \qquad Unit No.

Instructor:* Please indicate your resolution of the difficulty in this box.

\bigcircCorrected errors in materials. List corrections .here:

Gave student better explanation, example, or procedure than in unit. Give brief outline of your addition here:

Assisted student in acquiring general learning and problem-solving skills (not using examples from this unit.)

Name \qquad Unit No. \qquad Date \qquad
Institution \qquad Course No. \qquad
Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?

Not enough detail to understand the unit
Unit would have been clearer with more detail
\qquad
\qquad Unit was occasionally too detailed; but this was' not distracting
\qquad Too much detail; I was often distracted
2: How helpful were the problem answers?
\qquad Sample solutions were too brief; I could not do the intermediate steps
\qquad Sufficient information was given to solve the problems
\qquad Sample solutions were too detailed; I dint fed them
3. Except for fulfilling the prerequisites, how much did you use other sources (for. example, instructor, friends, ar other books) in order to understand the unit?
\qquad A Lot \qquad Somewhat \qquad A Little \qquad Not at all
4. How long was this unit in comparison to the amount of time you generally spend on \therefore a lesson (lecture and homework assignment). In a typical math or science course?

5.- Were any of the following parts of the unit confüging or distracting? (Check as many as apply.)
\qquad Prerequisites
\qquad Statement of skills and concepts (objectives)
\qquad Paragraph holdings
\qquad Spamplestial Assistance Supplement. (if present).
\qquad Other, please explain
6. Were any of the following parts of the unit particularly helpful? (Check as many as apply.)
\qquad Prerequisites
\qquad Statement of skills and, concepts (objectives)
\qquad
\qquad Probiles
\qquad Paragraph headings
\qquad Table of Contents
\qquad
\qquad
Special Assistance Supplement (if present)
other, please explain \qquad
Please describe anything in the unit that you did not particularly like

Please describe anything that you found partidnlarly helpful. (Please use the back of this sheet if you need more space:

Intexmodular Description Sheet: UMAP Unit 478

Title: Iteration and computer problem solving

Author: Herbert L. Dèrsheq
Department of Computer Sci'ence
Hope College
Holland, Michigan 49423
$0 \quad-$

Review Stage/Date: , 9/30/80

Classification: COMPUTER SCI/ALGORITHMS

Prèrequisite Skills:

'1. Completion of UMAP Unit 477, "Çomputer Problem'Solving."
Output Skillss

1. Be able to improve algorithms by enhancing them.
2. Be able to read, interpret, and follow through (as a computer would). algorithms that involve while, until, and variablecontrolled iteration.
3. Be able to describe and apply the top-down appraoch to algorithm design.

MODULES AND MONOGRAPHS IN UNDERGRADUATE

-ment "MATHEMATICS AND ITS APPLICATTONS PROJECT (UMAP)

The goal of UMAP is to develop, through a community of users and developers, a system of instructional modules in undergraduate mathematics and its applications which may be used to supplement existing courses and from which complete courses may eventually be built.

The Project is guided by a National Steering Comittee of mathematicians, scientists, and educators. UMAP is fundedrby a grant from the National Science Foundation to Education Development Center, Inc., a publicly suppoted, nonprofit corporătion engaged in educational research in the U.S. and abroad.

PROJECT. STAFF

- Ross L. Finney

Solomon Garfunkel Felicia DeMay
Barbara Kelczewski
Paula M. Santillo
Donna DiDuca
Janet Webber
Zahcary Zevitas
national steering committee

The Project would like to thank Douglas F. Hale of the University of Texas-Permian Basin; Odessa, -Texas; Carol Stokes of Danville Area Coñmunity College, Danville; Illinois; Ray Treadway of Bennett College, Greensboro, North Carolina; Carroll 0. Wilde of the Naval尞Postgraduate School, Monterey, California; and one anonymous reviewer; for their reviews, and all others who assisted in the production of this unit.

This material was prepared with the partial support of National Science Foundation Grant No. SED76-19615 A02. Recomméndations exprossed are those of the author and dq not neciessarily reflect the views of the NSF or the cồpyright holder.
(c) 1980 EDC/Project UMAP All right's reserved.

One of the major âdvantages in uising a computer for probiem solving is that a processs can be explained to the - computer once and the computer can repeat that process ${ }^{\circ}$ as many times as is necessary to solve the problem. In fact, without this computers would be of limited use
as problem solving machines because it generally takes longer to explain a process to the computer than to carry it out by hand. Rệeated execlition of a single set of instructions on a computer is often called iteration. The term "iteration" also refers to any single execution of a process that is carried out more than once; the sens, in which the term is used should be clear'from the con,text.

The module describēs ways in which you can use computer iteration effectively in problem solving and, in addition, ways in which you can use two other forms of iteration in constructing the algorithm. The second form of iteration involves repeated tracing through of the problem soiving steps, improving your algorithm with each. iteration. We call this process itewative improvement in
 - add features to the previous version.

The third form of iteration in problem solving is found in an approach to algorithm, design called the top-down approach. "This approach for carring out, step 4. of the problem solving process. (see Unit 477) might best be calledeterative refinement. It differs from iterative improvement in that the algorithm is not changed at each iteration, but rather, more detail is provided.:
2. A MORTGAGE PROBLEM

In order to illustrate the iteration technique, we . shal solver the following problem: given an amount of

Although our mortgage payment algorithm 1 will
, function properly if friendly values are input, it will - not respond in a suitable way to bad input. For example, consider the case in which the payment is too small to cover the interest for the month. Suppose prin $=20000$., rate $=.09$, and pay $=100$. If you follow through the steps of the algorithm with these values as input you get

$$
\begin{array}{cl}
\text { interest } & =150 \\
\text { prinpay } & =-50 . \\
& =20050 .
\end{array}
$$

On the other hand, thé payment may al so be too large. In this ciase, the payment covers the interest and the remaining principal and there is still some extra left. This is typical of the final payment in a pay-back schedule. For example, suppose prin $=60 .$, rate $=.09$, and pay $=100$. Then, the calculations would be

$$
\begin{aligned}
\text { interest } & =0.45 . \\
\text { prifipay } & =99.55 . \\
\text { new } & =s-39.55 .
\end{aligned}
$$

We shall use iterative improvement to correct these two, minor" flaws in our original algorithm. "if the payment is too small, we inform the user and terminate the program; iff it is too large, we pay off the loan and. notify the user that he or she is entitled to a refund.
7 These modifiçations to Algorithm 1 ane indicated in - Algorithm 2. The delcision box iplcluded inmediately after the input box tests for a payment too sinafl to cover the interest When this is the case, we provide a message to the user and then immediately halt the algorithm. This actionreptesents a policy of disallowing payments, which are inadequate to pay the interest.

discussed later. - The dashed line from the bódy back to the termination test indicates that this is an automatic brançh in the algorithm and not/one that needs to be explicitly defined. We can consider the dashed line to be a part of the iteration box.

The second form of the iteration box is the while. - iteration. This form accomplishes exactly the same action as the until iteration but does it in a logically opposite way. Its general form is shown in the next diagram.

\because The test is now called a continuation test because the iteration is continued as long as the test is satisfied. The continuation test is always log 䅗睎ly opposite to the termination test; the two forms are introduced becausessome computer languages naturally peṛformethe until iterations while others are designed. for while iteraltions.
As an example of the use of the iterations, consider the lalgorithm for finding the greatest common divisor. Wexhave two ways of exprepsing this algorithm using the iteration boxes just intrbduced,
Algonithm 9. Given two numbers; Nand M, find their greatest conmon divisor using an iteration statement. .

$$
1
$$

A? gorithitis and 3 b are logically equivalent in that thex accomplish the same task. Note that the condition in the iteration box of Algorithm $3 b$ is the Logical negation of the one in the iteration box of Algorithm $3 \mathrm{a}:$ That is, you terminate precisely when you do not cö́ntinue.

We now use these iteration roxes to make a final iterativa improvement to our mortage algorithm. We shall now haye the algorithm continue to make monthly payments until the mortgage is paid off. This algorithm is given in our flowechart language iñalgorithm 4 , Algorithm 4. Generate themonly payments negessary to pay off a mortgage with initial principal pring yearly interest rate rate, and monthly payment pay:

Variables
Name
print
Description
rates.
-Principal amount.
Yearly rate of interest expresșed às a decimal.

Much-of this algorithm looks familiar from
'Aleprithm, 2. After the results for one month are printed in an iteration, that month's new principal is then set to be the next month's beginning. principal. The iteration finally terminates when the amount paid on the *principal exceeds the principal balance: ©Unlike Algorithm-2, we now call'this a valid payment and make it the right amount to pay off the debt exactly'.

N. \because 5. VARIÁBLE-CONf̂́ROLLED ITERATION

In the last section we learned about forms of iteration which repeated a subalgorithm until termiṇ̂tion conditions were met or continuation conditions were not: Now we introduce a slighty different form of íteration. This is iteration controlled, by, a variable. :The general form of'such an iteration is

It should be noted that this form of iteration is a speciai case of the form we studied in the preceding section. This iteralion can be stated in terms of the previous one as indicated in the following diagram.

*'The'reason we give the variable-controlled iteration its own form, is that it is commonly used and is directly implemented in most programming langüages;

The variable which controls the iteration is set to some initial value at the beginning of the iteratidn. It is then modified after each execution of the body and the iteration is terminated when the control variable statisfies some termination conditioñ. In order to. control the iteration properly, the control variable should not be changed in the body. This form of steration is particularly useful when \exists proce'ss must be repeated a fixed -number 'of times'. In this case the control variable is used as a countèr which in some way keeps track of the number of times the body has been executed.

* Algórithm 5\%proyides an example of variable-controlled iteration. In this case, the variable, count is used to count the number of data values which have been read in. In is initialized to. 2 to indicate the second value is read during the execution of the body. It is incremented by each time, and when the increment makes count dariger than N, then N values have been read, so the ititeration is terminated.

4.

Algorithm 5. Find the argest of N values.

Anotherisnew box has been introducea iñthis algorithm. -This is the triangular shaped procedure bok. " The, name inside such a box is the name of a procedure which is to be executed at that point: This type of box is used to avoid complicated constructions" in the body of "an iteration.
, The flowchart for the procedure is then. found elsewhere. A"procedure is actualiy a subalgorithm. -Instead-of-beginning and ending, with START and STOP boxes, its terminafion boxes are ENTER and EXIT. The ENTER box of a procedure has a pennant attached to it which gives the name by which it ins chaded into action. When we arrive. at the EXIT bpx of the
procedife; we automatically cease execution' of the procedure
and begin execữon in the algorithm which called the procedure at the next sequential box after the procedure bdx.

We will utise such a procedure box as the body of a 1oop when the body' is longer than one or two boxes.

We now consider another example. Suppose there are 30 students in a class and each student has a studentic number and 10 quiz scores. The algorithm is to determine the sum of the quiz scores for each student: The algorithm for solving this problem is Algorithm 6:

Here we tran iteration within an iteration. This is a construction that occurs frequently in algorithms. Also note, in the Find-sum procedure, that sum needs to be initialized to zero before a"sum is accumulated. If this.isnot done, a cumulative sum of all students' scores will be computed. In fact, there is no guarantee that sum is zero at the very beginning of executition.
Algorithm 6:*Find the sum of 10 quiz scores for each of 30 students.

$$
=\quad \text { Variables }
$$

$60:$

Exercises

4. Modify algorithm 6 to input the number of students and the number of quiz scores for each student.
5. The following boxes are used in a flowcharrt janguage algorithm .for finding the two largest.numbers in a set of N numbers.
-Place the boxes in the proper arrangement.

big1 - The value read.
big2 - The next-to-biggest value read so far. A counţer used to count the number of ${ }^{\text {. }}$ values read".

61

些。
6. The following boxes can be used to construct an algorithm for computing the mean of a set of N numbers. Arrange them in the proper order.

7. Arrange the following boxes form an algorithm which finds all integers between M and N which are exactly divisible by K.

Description
The lower/ limit of the range of integers. The upper limit of the range of integers. The value whole numbers are to be printed. A^{4} counter used to test for answers which goes from M to N .

/. Algorithm .7. Res
The top-down-äpproach for designing, algorithms is ab. technique that allows the designer to handle a complicated algorithm in a simple way. The music approach is to design the algorithm using powerful boxes, then breaking those box down ing flowcharts with less powerful boxes and continuing that process until, you are at a level suit able for implementation on a computer.

In order to' illustrate this technique, we look at an algorithm for arrangáng N numbers in natural order.
Algorithm.7. Read N numbers and print them int non-

$$
\text { . . Name } \quad \text { Variables }
$$

$$
\begin{aligned}
& 6 \\
& 6 \\
& 6
\end{aligned}
$$

$$
\% i
$$

This is obviously not the final solution to our problem ＇since wef still haye not described t＇he ；process in engugh detail for the computer to follow．The next step is to break the middle box itself down into an algorithm This is the beginning of iterative refinement，
Algorithm 8．Put the numbers $A(1), \ldots, A(N)$ into non． descènding order．
 N－l values in the（ $N^{n}-1$ ）st position．We continue the process until all are in order．

Next we break down the box＂find the largest．．．＂into a flowchart．
$\frac{\text { Algorithm } 9}{\text { it } A(\max)}$ Find the largest of $A(1), \ldots, \ldots(k)$, cali
This profedure，for $k=N$ down to $k=2$ ，is to find the largest of the first k values and place it at the kth position．＇The first＂time，with $k=N$ ，we find the largest in the entire set and put it at the bottom．Fhe next pass through the iteration，with $k=N-1$ ，we ignore $A(N)$ ．since

Finally, we expand the "Exchange..." box from Algorithm 9. This requires three data movement's and one temporary lôcation. . It is given by the following algorithm.
Algorithm 10: Exchange $A(\max)$ and $A(k)$.

Variables

Description

An array of values
The indexes of the two values to be exchanged.

We nownaye. in Algorithms $7-10$, all of the steps necessary to compiete the task of placing the numbers in orden we combine these into one flowhart for \%algorithm

Algorithm 11. Complete Algorithm 'to read N numbers and". print them in non-descending order.

Algorithm 11 was designed by the top down approach. This means that we start with the highest level tasks and Proceed to break them down into more and more detailed subtasks until "finaldy, we have an algörithm which is detailed enough to provide complete instructions to computers. In this way we have broken the original problem-down into three simpler problems.

In general, top-down design is an: approach whereby a diffícult problem is broken down into several simplef problems "Each of these simpler problems may"also beo broken down into several simpler ones, and so on until all of the problems to be solved are within the grasp of. the problem solver. This iterative refinement is a yery impartant strategy in computer problem solving
\qquad

Exercises:

8. Wsing the see of numbers $5,3,9 ; 6,2,7$ follow through Algori thm 11 as a computer would.

9. Change first flownhart to ;

10. For Test 1 , result is prin $=20000$.

The following algorithm reads a set of 50 numbers and prints the 'smallest number in the set. Modify the algorithm so that-it prints not only the smallest number, hut also-the number of times that number occurs in the set.
 how màny years it would take for that amount to grow to over $\$ 1000$ if it accumulates interest at the rate of 6% compounded annually: - Use each of the boxes below exactly once'.

3. Explain in y your own words the top-down approach to algorithm design. Discuss why it is important.
1.

Student: If you have trouble with a specific part of this unit, please fill out this form and take it to your instructor, for assistance. The information you give will help the author to revise the unit.
Your Name \qquad -

Description of Difficulty: (Please be specifict)

Instructor: Please fndicate yout resolution of the difficulty in this box, . *
 Corrected errors in materials. List corrections here:

- Gave student better explanation, example, or procedure than in unit. Give brief outline of your addition here: .

OAssisted student in acqúiring general learning and problem-solving skills (not. using examples from this unit.)
\qquad

Name \qquad Unit No. \qquad Date
\qquad Course No. \qquad
Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?

Not.enough detail to understand the unit Unit would have been clearer with more detail Appropriate amount of detail
_ Unit was occasionally too detailed, but this was not distracting Too much detail; I was often distracted
2. How helpful were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps Sufficient information was given to solve the problems
_ Sample solutions were too detailed; I didn't need them
3. Except for fulfilling the prerequisites, how much did you use other sources (for example, instructor, friends, or other books) in order to understand the unit?

A Lot
Somewhat
A Little
Not at all
4. How long was this unit in comparison to the amount of time you generally spend on a lesson (lecture and homework assignment) in a typical math or science course?

Much	Somewhat	About	Somewhat	Much
Longer	Longer	the Same	Shorter	Shorter

5. Were any of the following parts of the unit confusing or distracting? (Check as many as apply.)

Prerequisites
__Statement of skills and concepts (objectives) Paragraph heading
Examples:
Special Assistance Supplement (if present)
Other, please explain
6. Were any of the following parts of the unit particularly helpful? (Check as many as"apply.)
" Prerequisites
Statement of skills and concepts (objectives)
Examples
Problems
Paragraph headings
Table of Contents
Special Assistance Supplemert (if present)
Other, please éxplain \qquad
Please describe anything in the unit that you did not particularly like.

Please describe anything that you found particularly helpful. (Please use the back of this sheet if you need more space,

[^0]: *
 *

 Reproductions supplied by EDíS are the best that can be made from the original document.
 **********************t******************************)

